首页 > 正文

【12月11日】分布式控制与应用专家报告

发布时间:2022-12-09文章来源:马翠芹 浏览次数:

1. 报告题目不确定非线性多自主体系统的分布式反馈优化

报告人:秦正雁

报告时间:2022.12.11  17:30-18:00   腾讯会议 620 600 905

摘要:对于多自主体系统,分布式反馈优化研究各个自主体如何利用其自身状态及局部梯度信息的实时反馈值以及自主体之间的实时信息交换使整个多自主体系统的状态趋近于某个总体优化指标的最优值点。分布式反馈优化必须同时克服多自主体系统自身复杂动力学和分布式信息获取所带来的挑战。本报告研究当多自主体系统包含不确定非线性动力学时,如何充分利用非线性系统的鲁棒和自适应控制手段来解决分布式反馈优化问题。

报告人简介:秦正雁,东北大学自动化学院博士,研究方向为分布式优化和控制。

 

2. 报告题目:Stochastic Extremum Seeking and Its Applications

报告人:刘淑君

报告时间:2022.12.11  18:10-18:40  腾讯会议 620 600 905

摘要:This talk is to introduce the framework of stochastic extremum seeking (ES) method and its applications. Firstly, we introduce a theoretical analysis tool for stochastic ES, namely, stochastic averaging theory for general local Lipschitz nonlinear systems with stochastic disturbance. Then, we present stochastics ES algorithms for static maps and dynamical nonlinear systems. Finally, we give some applications of stochastic ES to source seeking and optimal control.

报告人简介:刘淑君,四川大学数学学院教授,博士生导师,国家优秀青年基金获得者。主要研究方向为随机控制、随机极值搜索、自适应控制和随机优化方法等,发表学术论文四十多篇,出版英文专著一部(Springer出版社),主持过多项国家自然科学基金,担任国际期刊《IEEE Control Systems Letters》、国内期刊《控制理论与应用》和《Journal of Systems Science & Complexity》的编委。

 

3. 报告题目:Linear Quadratic Mean Field Stackelberg Games: Open-loop and Feedback Solutions

报告人:王炳昌

报告时间:2022.12.11  18:50-19:20  腾讯会议 620 600 905

报告摘要:This paper investigates open-loop and feedback solutions of linear quadratic mean field games with a leader and a large number of followers. The leader first gives its strategy and then all the followers cooperate to optimize the social cost as the sum of their costs. By variational analysis with mean field approximations, we obtain a set of (strict) open-loop controls of players in terms of solutions to mean field FBSDEs, which is further shown be to an asymptotic Stackelberg equilibrium. By applying the matrix maximum principle, a set of decentralized feedback strategies is constructed for all the players. For open-loop and feedback solutions, the corresponding optimal costs of all players are explicitly given by virtue of the solutions to two Riccati equations, respectively.

报告人简介:王炳昌,山东大学教授,博士生导师,国家优秀青年基金获得者,IEEE Senior Member。目前担任中国自动化学会青年工作委员会委员、区块链专委会委员、控制理论专委会随机学组委员。主要研究方向:随机控制与分布式计算、平均场博弈、机器学习等。发表学术论文60余篇。

 

关闭 打印责任编辑:吕瑞源

友情链接

Baidu
sogou